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Fracture mechanics of snow avalanches
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Dense snow avalanches are analyzed by modeling the snow slab as an elastic and brittle plate, attached by
static friction to the underlying ground. The grade of heterogeneity in the local fradlipethresholds, and
the ratio of the average substrate slip threshold to the average slab fracture threshold, are the decisive param-
eters for avalanche dynamics. For a strong pack of snow there appears a stable precursor of local slips when the
frictional contacts are weakenddquivalent to rising temperatyrewhich eventually trigger a catastrophic
crack growth that suddenly releases the entire slab. In the opposite limit of very high slip thresholds, the slab
simply melts when the temperature is increased. In the intermediate regime, and for a homogeneous slab, the
model display features typical of real snow avalanches. The model also suggests an explanation to why
avalanches are impossible to forecast reliably based on precursor observations. This explanation may as well
be applicable to other catastrophic rupture phenomena such as earthquakes.
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A dense snow or a slab avalanche is distinguished from &nches as a statistical physics system in a fashion typical of
loose snow avalanche by the shape of the area that has slidacture mechanics. We focus in particular on their behavior
especially that of the upper edge. A loose snow avalanchehen the grade of heterogeneity is varied together with the
typically starts at a single point from which it spreads asratio of the average slip threshold to the average fracture
pieces of snow tumble down forming a wedge shaped slidéhreshold.
surface. The texture of the falling snow is similar to that of As mentioned above, we consider the snow slab as an
soft granular matter. In the slab avalanche, on the other hané)astic and brittle solid. This approximation has been verified
it is rather a large solid plate of dense snow that starts slidingxperimentally for snow that is deformed at a reasonable
as an intact piece, and then fragments into discrete blocks asrain rate[4,5] (for low strain rates a viscoelastic behavior
it slides down a slope. The boundaries of the snow slab firsivith ductile creep fracture is a more relevant moddlo
appear visible as a fracture line on the snow surface at thignplement a numerical algorithm we further need to make
top of the slab. This fracture linghe so-called crown sur- the solid discrete. We do this by transforming it into a cubic
face is typically a shallow wedge opening downwards with |attice of beams. The intuitive picture is that a beam models
its knee at the point in which the failure is initiated. The the |ocal elastic stiffness in the slab. The discretization is in
crown surface usually propagates as far as possible, Untjrinciple similar to that used in the basic finite-element
eventually a stronger snow pack is encountered and thgethod. This approach has been tested in R&f. The
propagation stops. From this point onwards the fracture lin§yaams can be deformed in three dimensions by bending,
typically continues downhill as a slanting zig-zag pattern,ghearing  stretching, and torsion according to the linear

thus forming the flanks of the slab avalanch_e. Slap e}vafheory of elasticity for slender homogeneous beams. They
Li)nncri\r?stsgp;?]rgzlrggft_%%cilus(svnel)sltggpsel?p;(s)rxvagh tﬁirll'(n(;ll'gsgonnect massive blockseduced to poinjsand break if the

cannot be formed Instead the snow continuously Slidegtrain on them exceeds a threshold value. This threshold
downhill as it faIIs.. On mc;re moderate slopes the snowValue s to_a large exter!t determined b_y the temperatu_re.
seems only to melt away without any catastrophic eventgmd snow is strong, and its strength vanishes at the melting
[1,2]. temperature. This is why most avalanches appear when the

There are entire institutions that monitor the avalanchd®mperature is increased close to 0°C. We take the tempera-
hazard in countries with a high frequency of avalanchesture and thus also the average fracture threshold to be an
These institutions usually have advanced semiempiricaftdjustable parameter.
computer codes to calculate the avalanche risk depending on, The slab itself is modeled as a two-dimensional square
e.g., the amount of snow fall, temperature, and wind. Therdattice of beamdits thickness is not relevant heré\ll sites
also exist similar computer codes for the flow pattern ancare connected to the substrate by other beams, the beams
run-out distances of avalanches using the mountain-side téhus forming the bonds of a cubic lattice. The connecting
pology as an input as well as microscopic models of snow'friction beams” model the static frictional contact between
packs to investigate their strendtBi. the substrate and the slab. A gravitational forge §in 6) is

In this article we take another point of view to these phe-applied on all the masses in the downhill direction. We as-
nomena. We consider a snow slab as an elastic plate that ssime that the snow slab has a lens shapend adjust the
liable to fracture, and anchored to a substrate through statigravitational force accordingly. The slab is anchored at the
friction. We furthermore assume that there exist uncorrelatetbp and along the sides, thus limiting the size of the ava-
fluctuations in both the local slip threshold and the locallanche. The dynamical motion of all the lattice sites within
fracture threshold of the snow slab. We use a random nunthe slab are calculated using a discrete version of Newton'’s
ber generator to create virtual snow slabs, and analyze avaquations of motion including a linear damping term,
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FIG. 1. Snapshots of an avalanche. The time
elapsed from the first fracture is indicated at each
shapshot.

12.5 sec

MU+CU+KU=E. (1) the slgb. _To better _understand the behavioNgf we com-
pare it with an estimate for the number of broken beams
- based on uncorrelated fracture and on the load distribution
HereU is the displacement vector of the lattice sitsthe  pefore any beams are broken. If the distribution of the initial
stiffness matrixM the mass matrixC a damping matrix, and  joad on the beams i8(7), and the fracturéslip) thresholds
F the external forces. The time can as well be discretized bgecrease linearly with increasing time, aay{ at), i.e.,
using the definition of the time derivative &f. The time- When the temperature is increased, then the number of bro-

dependent displacements of the slab dites, Lj) can there- ken beams in the slab can be estimated to be

after be calculated numerically by iteration of time steps,

starting from the static equilibrium. o
There exist heterogeneities in all natural materials. Both Cb(t)zLXLyJ d(rt)p(7)dr, (2

experimental and theoretical investigations have demon- 0

strated that the distribution of strength, e.g., is typically lim-

ited to a narrow rangg3]. Distributions such as the Weibull

{C(7e)=1-exfc(r/m)"™} or the modified Gumbel Our virtual slabs can be categorized into four qualitatively

{C(7e)=1—exf—cexp(-Kr)]; distribution, which are oo poboviore depending on the grade of heterogeneity
commonly used to fit experimental data, both display a '8P%h the local thresholds, and the ratio of the average slip

|d_Iy _dec_reasmg occurrence probability. Schematically, t.he[hreshold to the average fracture threshold. The characteris-
distribution of local strengths may thus be modeled as a lim;

ited uniform distribution of local strengths around an average%iCS of these four categories are displayed in Fig. 2. In this
- figure we showN,, W,, andC,, as functions of time for the

value. For simplicity, this is what we use here in our numeri- =< when the fracture threshold is \digie. 2(A)], the slip

cal model. We denote the distribution of fractutslip) ; . )
thresholds byd(7), and it is thus a nonzero constant in thethreShOIOI is largéFig. 2B)], the fracture and the slip thresh-

interval[ 1— 6,1+ §].

whered(7) is defined agi(7,t)=[jd(7,t)dr;.

60

In Fig. 1 we show snapshots of a simulation. The slab is
: 50| N, —
homogeneous and a local fracture takes place at a strain that < 40| cP
) . ) » ; A2 40| S
is 1.6 times that needed for a local slip. Initially one single ~ 14 30| Wi
friction beam is removed from the middle of the upper part 2320
of the slab, and then the slab is equilibrated. This removed 12 5
beam models a single perturbation in the substrate. Thereaf- 300 350 400 450 500
ter the temperature is slowly increased such that the fracture 2 (738 fime
and slip thresholds are simultaneously lowered at a constant S% s 50 gg‘
rate. The distributiord(7;) thus becomes time dependent. 53 / ﬁgg Wi..
When the fracture and the slip thresholds become sufficiently ig :;_,-': ‘2-20
low, a catastrophic crack propagation within the slab, and 0 c 1g D
simultaneously between the slab and the substrate, takes 200 300 200 100 200 3t00 1050 500
ime

place. The crack propagation is initiated at the perturbed site. time

As is evident from Fig. 1, the resulting avalanche is very Fig. 2. N,, Cy, andW, as functions of time(A) The strong
similar to the real slab avalanches described above. slab case withs=0.25, (B) the strong friction case witld=0.25,
In order to study in more detail the behavior of the ava-(C) the intermediate case with=0.1, andD) the intermediate case
lanches, we recorded, as functions of time, the total kinetigvith 5=0.75. Notice thatW, coincide with thex axis in (B). The
energy W,) and the number of broken beamdj within ~ number of broken bonds is given in hundreds on eaelis.
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olds are about the same magnitude and the heterogeneity is 10000
small[Fig. 2(C)], and correspondingly when the heterogene- 1000}
ity is large[Fig. 2(D)]. . oo

In Fig. 2(A) only the friction beams are allowed to break, ;_e 1?
and §=0.25. As is evident from Fig. (&) the number of Z

. . . a 041

broken bonds follows first quite closely the theoretical pre- S 001
diction Eq.(2), while the kinetic energy is practically zero. 0.001
This number provides a quasistatic precursor to the ava- 0.0001L
lanche. At the timet~390, the process becomes unstable 340 380 420

and a rapid crack propagating among the friction beams sud- time
denly releases the sIab.lThi.s phenomenqn iTc' r_eflected in an FIG. 3. Figure 2A) on a semilog scaleE, is also included for
explosive growth of the klnet[c energy, which is mclreased bycomparison. The vertical line denotes the onset of the avalanche.
more than 7 orders of magnitude in a very short time. For a
larger & the behavior is similar, but the precursor stage isprecursor and a catastrophic event. By plotting Fig)2on
longer. Notice that our model is in this case rather similar toa semilogarithmic scale we get a better view of the kinetic
the so-called fiber bundle mod€l8—11]. The difference is energy during this particular event. Figure 3 demonstrates
that here there is no need to postulate a load-shearing rulethat the kinetic energy is roughly constant before the ava-
In Fig. 2B), only the slab beams are allowed to break,lanche. As a comparison we can also make a rough estimate
and §=0.25. When friction is very strong, and only the slab of the kinetic energy based on arguments similar to the ones
beams break, the behavior is very different. This would corused to find Eq.(2). This is done by first estimating the
respond to a layer of snow on a moderate slope. In such alastic energy released in each breaking, and assuming then
case the normal force on the slab is always much larger thaghat this energy is completely transformed into kinetic en-
the gravitational force, which means that frictional slips doergy which is dissipated during a constant time interval. This
not appear. No avalanche takes place in this case, the numbénetic energy is denoted b, in Fig. 3. There is a weak
of broken beamsNy,) practically followsC, at all times, and  increase inW, in comparison withE, just before the ava-
the kinetic energy remains very small. The slab simply meltdanche. This increase takes place during a time interval that
when the temperature is increased. is about the same as the duration of the avalanche. During
In Fig. 2(C), the friction beams break at a strain that is 1.6this interval the kinetic energy is roughly tripled. This accel-
times that needed for a local slip, ade-0.1. In this case an erating release of kinetic energy provides the final warning
avalanche like the one shown in Fig. 1 appears. As demorsignal for the avalanche. In this particular case the final
strated by this figurel, deviates fronC,, already when the warning is given at a very short notice, and its energy con-
first beams break &t~370. N, and W, both increase very tent is very small in comparison with the enormous amount
rapidly as a result of a catastrophic crack growth that releasesf energy released in the event itself. Because the kinetic
the slab. It is only the beams that remain unbroken above thenergy increases such that it practically diverges, it is, of
avalanche that break more slowly. This is seen as the moreourse, possible to fit by a power-law curve. We find that
moderate slope of thd,, curve at the end of the simulation. W, (t.—t) ¢, with «=2.5+0.5, just before the onset of
In Fig. 2(D), the friction beams break at a strain that is 1.6the avalanche at=t,.
times that needed for a local slip, ad=0.75. For delta How can these results then explain the uncertainty in the
large, disorder dominates and the number of broken beanmwccurrence of precursor signals? On one hand, Fig) and
follows rather closely the result EqR). The kinetic energy Fig. 3 display a quasistatic precursor related to microfrac-
begins to grow gradually all, increasingly deviates from tures at the weak bonds. The number of friction bonds di-
Cy. This happens because small fragments of the slab amainishing because of these micro-fractures, cannot in the end
continuously released from the substrate and they cause locaithstand the load of the entire slab, and the avalanche is
avalanches. This case is similar to creeping failure in thdriggered via an accelerating release of energy. On the other,
sense that there is no distinct point of global failure. in Fig. 1 and in Fig. 2C) there appears initially a dominating
Precursors have attracted a lot of scientific interest reload “hot spot” at a single site. The first microfracture ap-
cently as they may provide warning signals for catastrophigeared in the vicinity of this spot and it immediately trig-
events. Observations of precursors in natural snow avagered a catastrophic failure. The avalanches in Figs. 1 and
lanches have not, however, been conclusive. By submerging(C) thus appeared without any warning signal. It thus seems
microphones in the snow on hazard slopes it has been fourtiat the appearance of a precursor signal depends on weather
that some avalanches give a clear precursor signal in tha microfracture is capable of triggering the catastrophic fail-
form of increasing acoustic emission before a large avaure, and this depends on a complicated interplay between the
lanche. On the other hand, many avalanches appear withodistribution of the failure thresholds and the stress fiéil.
such signal$12,13. In the cases in which precursors could This interplay has to be determined separately for each
be detected, the acoustic emission was found to roughly folweather condition and each slope topology, which makes it
low a power-law divergencgl2]. We would expect that the very difficult to reliably forecast avalanches based on precur-
kinetic energy of the slab is proportional to the energy ofsor observations. Finally, there seems to be a similar situa-
acoustic waves created in the process. Of the four categori¢®n concerning the existence of precursors to earthquakes
in Fig. 2 it is only the one in Fig. @) that displays both a [15]. Apparently the difficulty there is of similar nature.
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